Thread Turning Technical Section

A04

Contents:	Page:	Contents:	Page:
Carbide Grade Selection	2	Thread Turning Methods	5
Type B inserts	2	Important Points about Carmex Threading Inserts	6
Recommended cutting speed	3	Flank Clearance Angle	6
Conversion of Cutting Speed to Rotational Speed	4	Anvil Change Recommendation	7
Number of passes and depth of cut per pass		Thread Turning - Step by Step	8-9
for multitooth insert	4	Troubleshooting	9
Number of threading passes selection		Threading Inserts Standards	10
for single point inserts	5		

A04-1

Carmex inch 2022.indb 1 16/06/2022 14:04

Carmex Precision Tools Ltd. Thread Turning Inserts Technical Section

Carbide Grade Selection

Choose the Carmex grade specifically formulated for your application from the following list: **Coated Grades**

HBA (H10-H25) (S10-S25)

Extra-fine sub-micron grade with high toughness, for optimized performance on hardened steels and cast iron up to 62HRc, titanium alloys and super alloys (Hästelloy, Inconel and Nickel based

(M10-M20) (K05-K20) (N10-N20) (S10-S20)

PVD triple layer coated sub-micron grade for stainless steels, cast iron, titanium, non ferrous metals and most of the high temperature alloys.

BMA (P20-P40) (K20-K30) PVD TiAIN coated sub-micrograin grade for stainless steels and exotic materials at medium to high cutting speeds.

P25C (P15-P35)

PVD TiN coated grade for treated and hard alloy steels (25 HRc & up) at medium to low cutting

MXC (K10-K20) (P10-P25)

PVD TiN coated micrograin for free cutting untreated alloy steels (below 30 HRc), for stainless steels and cast iron.

BXC (P30-P50) (K25-K40)

PVD TiN coated grade for low cutting speed. Works well with wide range of stainless steels.

Uncoated Grades

P30* (P20-P30) Carbide grade for carbon and cast steels, works well at medium to low cutting speeds.

K20* (K10-K30)

Carbide grade for non ferrous metals, aluminum and cast iron.

Note:

Due to our unique and specialized production techniques, Carmex coated inserts provide superior cutting performance and exceptionally long tool life.

Grade availability per inserts size

Grade	HBA	BLU	ВМА	P25C	MXC	BXC	P30	K20
Insert sizes	11, 16, 22, 27	11, 16, 22	06, 08, 11, 16, 22, 27, 33U,	11, 16, 22, 27, 33U	11, 16, 22, 27, 33U	06, 08	11, 16, 22, 27, 33U	06, 08 11, 16, 22, 27, 33U
		Type-B 11, 16	Type-B 11, 16					

Type B - Threading Inserts

A combination of ground profile, and sintered chip-breaker threading inserts. Unlike most other manufacturers inserts, this combination ensures a consistent high quality thread, with precise shape and dimensions.

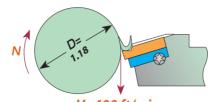
Two different unique styles of chip-breaker were designed to suit the different specific requirements of Internal threads and External threads.

All of Carmex Type B inserts are made of Sub-Micrograin grade.

A04-2

Carmex inch 2022.indb 2 16/06/2022 14:04

^{*} Upon request


Recommended cutting speed (ft/min) for thread turning inserts

ISO	Material		Condition	Carbide Grades								
Standard	Maleria	ll .	Condition	HBA	BLU	BMA	P25C	MXC	BXC	K20	P30	
P	Non-Alloy Steel and Cast Steel, Free Cutting Steel ≥0.5		Annealed Annealed Quenched & Tempered Annealed Quenched & Tempered		360-690	390-590	330-590	390-590	230-490		165-425	
P	Steel (less than	ow Alloy Steel and Cast iteel (less than 5% lloying elements)			295-460	260-425	230-394	230-390	195-295		165-260	
	High Alloy Steel, Steel, and Tool S	Cast Steel	Annealed Quenched & Tempered		230-295	195-260	165-195	180-230	165-195		130-165	
M	Stainless Steel and Cast Steel		Ferritic / Martensitic Martensitic Austenitic		360-525	295-425	195-295	195-295	165-260	165-260		
1/	Cast Iron Nodula	ar (GGG)	Ferritic / Pearlitic Pearlitic Ferritic		390-490	330-425		260-360	195-295			
K	Grey Cast Iron (Grey Cast Iron (GG)			460-490	395-425		395-330	215-280			
	Malleable Cast Iron		Ferritic Pearlitic		360-460	330-425		260-330	195-280			
	Aluminum-Wrought Alloy		Not Cureable Cured		2300- 3280			1970-2620	1480-1970	1970-2620	1150-1640	
	Aluminum-Cast, Alloyed	<=12% Si	Not Cureable Cured		920-2460			650-1800	490-1150	660-1800	360-985	
	,o, o	>12% Si	High Temperature									
N	Q AII	>1% Pb	Free Cutting Brass		625 1150			490-820	360-590	490-820	295-490	
	Copper Alloys		Electrolytic Copper		625-1150			490-620	360-390	490-620	295-490	
	Non Metallic		Duroplastics, Fiber Plastics Hard Rubber Annealed					655-985	490-690	330-655	360-490	
S	High Temp. Alloys, Super Alloys	Alloys, Super Ni or Co		65-260	100-215	80-195						
3	Titanium Alloys		Cast Alpha +Beta Alloys Cured	100-195	130-165	115-145				115-145		
			Hardened 45-50 HRc									
Н	Hardened Steel		Hardened 51-55 HRc Hardened 56-62 HRc	100-195	130-165	115-145						
	Chilled Cast Iron)	Cast	65-165	100-130	80-115						
	Cast Iron	Hardened	65-130	65-100	50-80							

Thread Turning Inserts Technical Section

Conversion of Cutting Speed to Rotational Speed

Conversion of a selected cutting speed to rotational speed is calculated by the following formula:

Example

N -	V x 12		400 x 12 ===============================
/V =	π_{xD}	-	3.14 x 1.18

Number of passes and depth of cut per pass for multitooth insert

	Pitch	Insert	Size	No. of	Ordering Code	No. of	Depth of Cut per pass				
	mm / TPI	L mm	I.C.	Teeth	Ordering Code	Passes	1	2	3	4	
	1.00	16	3/8	3	16 ER 1.0 ISO 3M	2	.015	.010			
	1.50	16	3/8	2	16 ER 1.5 ISO 2M	3	.017	.012	.008		
ISO	1.50	22	1/2	3	22 ER 1.5 ISO 3M	2	.022	.015			
External	2.00	22	1/2	2	22 ER 2.0 ISO 2M	3	.022	.016	.011		
	2.00	22	1/2	3	22 ER 2.0 ISO 3M	2	.030	.019			
	3.00	27	5/8	2	27 ER 3.0 ISO 2M	4	.023	.020	.017	.013	
	1.00	16	3/8	3	16 IR 1.0 ISO 3M	2	.013	.010			
	1.50	16	3/8	2	16 IR 1.5 ISO 2M	3	.015	.011	.008		
ISO	1.50	22	1/2	3	22 IR 1.5 ISO 3M	2	.020	.015			
Internal	2.00	22	1/2	2	22 IR 2.0 ISO 2M	3	.020	.014	.010		
	2.00	22	1/2	3	22 IR 2.0 ISO 3M	2	.028	.018			
	3.00	27	5/8	2	27 IR 3.0 ISO 2M	4	.023	.018	.015	.012	
	16	16	3/8	2	16 ER 16 UN 2M	3	.017	.012	.009		
UN	16	22	1/2	3	22 ER 16 UN 3M	2	.023	.015			
External	12	22	1/2	2	22 ER 12 UN 2M	3	.023	.017	.012		
	12	22	1/2	3	22 ER 12 UN 3M	2	.031	.020			
	8	27	5/8	2	27 ER 8 UN 2M	4	.024	.021	.018	.014	
	16	16	3/8	2	16 IR 16 UN 2M	3	.017	.011	.009		
	16	22	1/2	3	22 IR 16 UN 3M	2	.022	.015			
UN	12	22	1/2	2	22 IR 12 UN 2M	3	.021	.015	.012		
Internal	12	22	1/2	3	22 IR 12 UN 3M	2	.029	.019			
	8	27	5/8	2	27 IR 8 UN 2M	4	.025	.020	.016	.012	
Whitworth	14	16	3/8	2	16 ER 14 W 2M	3	.020	.015	.011		
55°	14	22	1/2	3	22 ER 14 W 3M	2	.028	.030			
External	11	22	1/2	2	22 ER 11 W 2M	3	.026	.019	.013		
Whitworth	14	16	3/8	2	16 IR 14 W 2M	3	.020	.015	.011		
55°	14	22	1/2	3	22 IR 14 W 3M	2	.028	.018			
Internal	11	22	1/2	2	22 IR 11 W 2M	2	.026	.019	.013		
	14	16	3/8	2	16 ER 14 NPT 2M	3	.021	.018	.017		
NIDT	11.5	22	1/2	2	22 ER 11.5 NPT 2M	4	.019	.019	.017	.013	
NPT	11.5	27	5/8	3	27 ER 11.5 NPT 3M	4	.020	.019	.017	.012	
External	8	27	5/8	2	27 ER 8 NPT 2M	4	.029	.026	.024	.021	
	14	16	3/8	2	16 IR 14 NPT 2M	3	.021	.018	.017		
	11.5	22	1/2	2	22 IR 11.5 NPT 2M	4	.019	.019	.017	.013	
NPT	11.5	27	5/8	3	27 IR 11.5 NPT 3M	4	.020	.019	.017	.012	
Internal	8	27	5/8	2	27 IR 8 NPT 2M	4	.029	.026	.024	.021	
4515	10	22	1/2	2	22 ER 10 APIRD 2M	3	.024	.020	.012		
API Round	10	27	5/8	3	27 ER 10 APIRD 3M	2	.039	.016			
External	8	27	5/8	2	27 ER 8 APIRD 2M	3	.031	.024	.016		
	10	22	1/2	2	22 IR 10 APIRD 2M	3	.024	.020	.012		
API Round	10	27	5/8	3	27 IR 10 APIRD 3M	2	.039	.016			
Internal	8	27	5/8	2	27 IR 8 APIRD 2M	3	.031	.024	.016		
		_,	0,0	_			.001	.02 1	.010		

A04-4

Carmex inch 2022.indb 4 16/06/2022 14:04

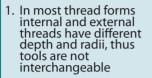
Number of threading passes selection for single point inserts

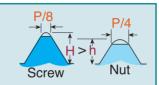
									•				
Pitch:	mm TPI	0.5 48	0.8 32	1.0 24	1.25 20	1.5 16	1.75 14	2.0 12	2.5 10	3.0 8	4.0 6	6.0 4	
Number of Passes		3-6	4-7	4-9	6-10	5-11	9-12	6-13	7-15	8-17	10-20	11-22	

NOTES:

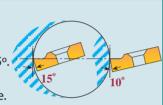
- 1. For most standard applications the middle of the range is a good starting point.
- 2. For most materials, the tougher the material, the higher the number of cutting passes you should select.
- 3. As a general rule of thumb, Fewer passes are better than more speed.

Thread Turning Methods

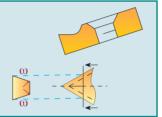


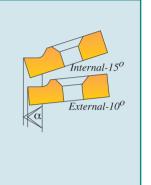

A04-5

Carmex inch 2022.indb 5 16/06/2022 14:04

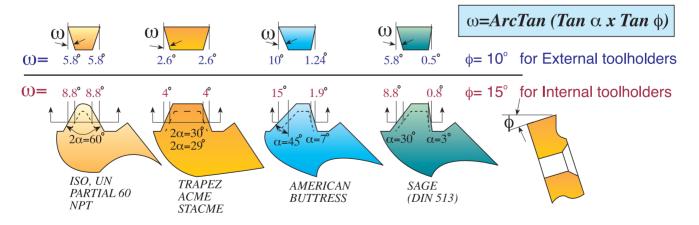

Carmex Precision Tools Ltd. Thread Turning Inserts Technical Section

Important Points about Carmex **Threading Inserts**



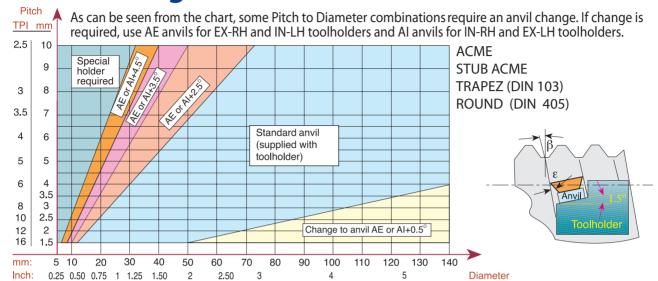

2. The Insert relief angle of a standard toolholder is 10°; for an internal toolholder is 10°; for an internal toolholder it is 15°. This 5° difference is to provide additional necessary radial clearance.

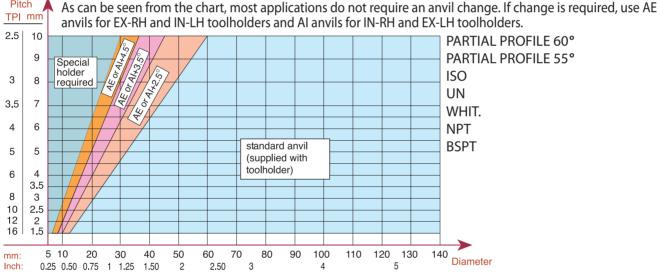
3. Our built-in relief angles ensure automatic insert flank angle clearance.

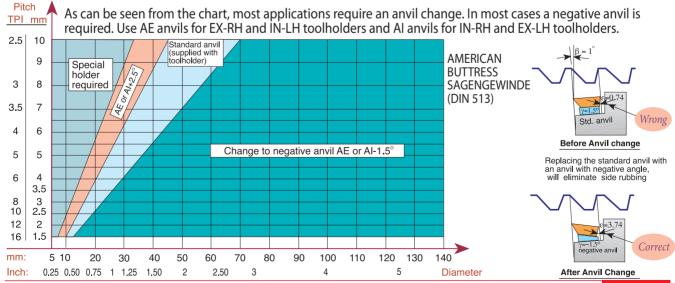

4. Profiles of Carmex internal & external threading inserts are precision ground to ensure accurate thread geometry when used in their corresponding toolholders. Using internal inserts with an external holder will result in distortion of angle and insert geometry.

5. Insert and toolholder should always match. An IN-RH insert must be used with an IN-RH toolholder. No mismatch is allowed.

Flank Clearance Angle ω




A04-6


16/06/2022 14:04 Carmex inch 2022.indb 6

Anvil Change Recommendation

A04-7

Carmex inch 2022.indb 7 16/06/2022 14:04

Thread Turning - Step by Step

- **Step 1: Choose Thread Turning Method**
- Step 2: Choose Insert Step 3: Choose Toolholder
- **Step 4: Choose Insert Grade** Step 5: Choose Thread Turning Speed
- **Step 6: Choose Number of Threading Passes**
- In most cases the above mentioned 6 steps would be the steps needed to ensure a good thread. When cutting more complicated threads such as TRAPEZ, ACME, BUTTRESS or SAGE, it is advisable to check the effect of the thread "HELIX ANGLE" β on the "RESULTANT FLANK CLEARANCE" ϵ . If ϵ is smaller than 2°, an anvil change is required.
- **Step 7: Find Thread Helix Angle Step 8: Choose Correct Anvil**

EXAMPLES:

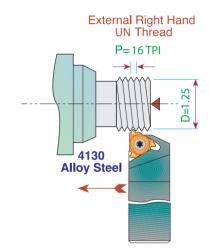
Example No. 1:

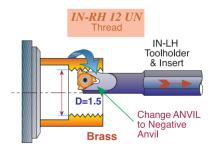
- Step 1: Choose Thread Turning Method from page A04-5, we chose **EX - RH Insert & Toolholder**
- Step 2: Choose Insert from page A01-11: 16 ER 16 UN
- Step 3: Choose Toolholder from page A02-3: **SER 0750 K16**
- Step 4: Choose Insert Grade from selection on page A04-2 Our choice for Alloy Steel is Grade P25C
- Step 5: Choose Thread Turning Speed from chart on page A04-3, we chose 330 ft/min

Rotational Speed calculation:

$$N = \frac{330 \times 12}{\pi \times 1.25} = 1008 \text{ rpm}$$

Step 6: Choose Number of Threading passes from table on page A04-5, we chose 8 passes


Example No. 2:


- Step 1: Choose Thread Turning Method from page A04-5 Usually, an IN-RH Toolholder and Insert will be chosen, however, in this particular case we prefer to pull the metal chips while thread turning outward, thus we chose to work with IN-LH Insert & Toolholder
- Step 2: Choose Insert from page A01-11: 16 IL 12 UN
- Step 3: Choose Toolholder from page A02-7: SIL 1000 R16 Note: since we thread cut IN-RH thread outward with an IN-LH tool, do not forget to replace the standard anvil (supplied with the holder) with a negative anvil AE16-1.5
- Step 4: Choose Insert Grade from selection on page A04-2 Our choice for Brass is Grade K20
- Step 5: Choose Thread Turning Speed from chart on page A04-3, we chose 450 ft/min

Rotational Speed calculation: $N = \frac{450 \times 12}{1146} = 1146$ RPM

$$N = \frac{450 \times 12}{TL \times 1.5} = 1146 \text{ RPM}$$

Step 6: Choose Number of Threading passes from table on page A04-5, we chose 9 passes

A04-8

Carmex inch 2022.indb 8 16/06/2022 14:04

Example No. 3:

Step 1: Choose Thread Turning Method from page A04-5

We chose EX-RH Insert & Toolholder.

- Choose Insert from page A01-31: 16 ER 12 ABUT Step 2:
- Step 3: Choose Toolholder from page A02-3: SER 1000 M16
- Step 4: Choose Insert Grade from selection on page A04-2 Our choice for Stainless Steel is Grade BMA
- Choose Thread Turning Speed from chart on page A04-4 Step 5:

We chose 360 ft/min.

Rotational Speed calculation:

 $N = \frac{360 \times 12}{} = 917 \text{ RPM}$ π × 1.5

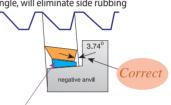
Step 6: Choose Number of Threading passes

from table on page A04-5. We chose 13 passes

Find Thread Helix Angle: on page A02-16 Step 7: for Pitch of 12 TPI and 1.5 Diameter

Helix Angle as shown in the chart is 1°

Step 8: Choose correct Anvil: As can be seen


from the chart on page A04-7, for AMERICAN BUTTRESS Thread, for 12 TPI and 1.5 Diameter a negative anvil AE16-1.5 should replace the standard anvil supplied with the toolholder

EX-RH. AMERICAN BUTTRESS 12 TPI on 1.5 diameter.

Stainless Steel 304

Replacing the standard anvil with an anvil with negative angle, will eliminate side rubbing

Anvil chosen: AE16-1.5

Troubleshooting

Chipping

- 1. Use a tougher carbide grade
- 2. Eliminate tool overhang
- 3. Check if insert is correctly clamped
- 4. Eliminate vibration

Crater Wear

- 1. Reduce cutting speed
- 2. Apply coolant fluid
- 3. Use a harder carbide grade

Build-up Edge

- 1. Increase cutting speed
- 2. Use a tougher carbide grade

Thermal Cracking

- 1. Reduce cutting speed
- 2. Apply coolant fluid
- 3. Use a tougher carbide grade

Deformation

- 1. Use a harder carbide grade
- 2. Reduce cutting speed
- 3. Reduce depth of cut
- 4. Apply coolant fluid

Fracture

- 1. Use a tougher carbide grade
- 2. Reduce depth of cut
- 3. Index insert sooner
- 4. Check machine and tool stability

A04-9

Carmex inch 2022.indb 9 16/06/2022 14:04

Thread Turning Toolholders

Threading Inserts Standards

Thread Profile	Standard	Thread Class
ISO	DIN 13	6g / 6H
UN	ANSI B1.1-1989	2A / 2B
WHITWORTH	B.S. 84: 1956	Medium Class
NPT	ANSI B1.20.1-1983	-
NPTF	ANSI B1.20.3-1976	-
NPS	ANSI B1.20.1-1983	-
NPSM	ANSI B1.20.1-1983	-
BSPT	B.S. 21: 1957	-
DIN 477	DIN 477	-
ACME	ANSI B1.5-1988	3G (EXT), 3G / 2G (INT)
STUB ACME	ANSI B1.8-1988	2G
TRAPEZ	DIN 103	7e / 7H
ROUND	DIN 405	Class 7
UNJ	MIL-S-8879C	3A / 3B
MJ	ISO 5855	4h/6h, 4H/5H
AMERICAN BUTTRESS	ANSI B1.9-1973	Class 2
SAGENGEWINDE	DIN 513	-
PG	DIN 40430	-
V-0.040	API Spec7	-
V-0.038R	API Spec7	-
V-0.050	API Spec7	-
V-0.055	API Spec7	-
API ROUND	API Spec Standard 5B	-
EXTREME – LINE CASING	API Spec Standard 5B	-
BUTTRESS CASING	API Spec Standard 5B	-
VAM	VAM	-
HUGHES	HUGHES	-
PAC	PAC	-

DIN: Deutsches Institut für Normung

ANSI: American National Standards Institute

API: American Petroleum Institute

B.S.: British Standards

ISO: International Organisation for Standardization

MIL-S: Military Specification

NPT: American National Standard Taper Pipe Thread
NPTF: National Standard Taper Fuel:Dryseal USA

PAC: Pacific Asia Connection

NPS: Straight thread, same as NPT without taper

NPSM: Free-Fitting Mechanical Joints

A04-10

Carmex inch 2022.indb 10 16/06/2022 14:04